U.S. DEPARTMENT OF HOMELAND SECURITY - FEDERAL EMERGENCY MANAGEMENT AGENCY

RIVERINE STRUCTURES FORM

O.M.B No. 1660-0016 Expires: 12/31/2010

PAPERWORK REDUCTION ACT

Public reporting burden for this form is estimated to average 7 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form. You are not required to respond to this collection of information unless a valid OMB control number appears in the upper right corner of this form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, U.S. Department of Homeland Security, Federal Emergency Management Agency, 500 C Street, SW, Washington DC 20472, Paperwork Reduction Project (1660-0016). Submission of the form is required to obtain or retain benefits under the National Flood Insurance Program. Please do not send your completed survey to the above address.

Flooding Source:	
r looding codrec.	
Market Fill and any former former of the afternoon and afterd	
Note: Fill out one form for each flooding source studied	

A GENERAL

			711 0 = 11 = 111				
Comp	Complete the appropriate section(s) for each Structure listed below:						
	Channelization	complete Section C complete Section D					
Descr	iption Of Structure						
1.	Name of Structure:						
	Type (check one):	☐ Channelization	☐ Bridge/Culvert	Levee/Floodwall	☐ Dam/Basin		
	Location of Structure:						
	Downstream Limit/Cross	s Section:					
	Upstream Limit/Cross S	ection:					
2.	Name of Structure:						
	Type (check one):	☐ Channelization	☐ Bridge/Culvert	☐ Levee/Floodwall	☐ Dam/Basin		
	Location of Structure:						
	Downstream Limit/Cross	s Section:					
	Upstream Limit/Cross S	ection:					
3.	Name of Structure:						
	Type (check one)	☐ Channelization	☐ Bridge/Culvert	☐ Levee/Floodwall	☐ Dam/Basin		
	Location of Structure:						
	Downstream Limit/Cross	s Section:					
	Upstream Limit/Cross S	ection:					
N.C.=:							
NOT	E: For more structure	es, attach additional pages	as needed.				

B. CHANNELIZATION

Floo	oding Source:
Nan	ne of Structure:
1.	Accessory Structures
	The channelization includes (check one):
	□ Levees [Attach Section E (Levee/Floodwall)] □ Drop structures □ Superelevated sections □ Transitions in cross sectional geometry □ Debris basin/detention basin [Attach Section D (Dam/Basin)] □ Energy dissipator □ Other (Describe): □ Other (Describe):
2.	Drawing Checklist
	Attach the plans of the channelization certified by a registered professional engineer, as described in the instructions.
3.	Hydraulic Considerations
	The channel was designed to carry (cfs) and/or the -year flood.
	The design elevation in the channel is based on (check one):
	☐ Subcritical flow ☐ Critical flow ☐ Supercritical flow ☐ Energy grade line
	If there is the potential for a hydraulic jump at the following locations, check all that apply and attach an explanation of how the hydraulic jump is controlled without affecting the stability of the channel.
	☐ Inlet to channel ☐ Outlet of channel ☐ At Drop Structures ☐ At Transitions ☐ Other locations (specify):
4.	Sediment Transport Considerations
	Was sediment transport considered?
	C. BRIDGE/CULVERT
Floo	oding Source:
Nan	ne of Structure:
	1. This revision reflects (check one):
	☐ Bridge/culvert not modeled in the FIS ☐ Modified bridge/culvert previously modeled in the FIS ☐ Revised analysis of bridge/culvert previously modeled in the FIS
	2. Hydraulic model used to analyze the structure (e.g., HEC-2 with special bridge routine, WSPRO, HY8): If different than hydraulic analysis for the flooding source, justify why the hydraulic analysis used for the flooding source could not analyze the structures. Attach justification.
3.	Attach plans of the structures certified by a registered professional engineer. The plan detail and information should include the following (check the information that has been provided):
	□ Dimensions (height, width, span, radius, length) □ Erosion Protection □ Shape (culverts only) □ Low Chord Elevations – Upstream and Downstream □ Material □ Top of Road Elevations – Upstream and Downstream □ Beveling or Rounding □ Structure Invert Elevations – Upstream and Downstream □ Wing Wall Angle □ Stream Invert Elevations – Upstream and Downstream □ Skew Angle □ Cross-Section Locations □ Distances Between Cross Sections
4.	☐ Shape (culverts only) ☐ Low Chord Elevations – Upstream and Downstream ☐ Material ☐ Top of Road Elevations – Upstream and Downstream ☐ Beveling or Rounding ☐ Structure Invert Elevations – Upstream and Downstream ☐ Wing Wall Angle ☐ Stream Invert Elevations – Upstream and Downstream ☐ Skew Angle ☐ Cross-Section Locations

D. DAM/BASIN

Flo	oding Source:
Nar	ne of Structure:
1.	This request is for (check one): Existing dam New dam Modification of existing dam
2.	The dam was designed by (check one): Federal agency State agency Local government agency Private organization
	Name of the agency or organization:
3.	The Dam was permitted as (check one):
	a.
	Provide the permit or identification number (ID) for the dam and the appropriate permitting agency or organization
	Permit or ID number Permitting Agency or Organization
	b.
	Provided related drawings, specification and supporting design information.
4.	Does the project involve revised hydrology? ☐ Yes ☐ No
	If Yes, complete the Riverine Hydrology & Hydraulics Form (Form 2).
	Was the dam/basin designed using critical duration storm?
	Yes, provide supporting documentation with your completed Form 2.
	No, provide a written explanation and justification for not using the critical duration storm.
5.	Does the submittal include debris/sediment yield analysis? ☐ Yes ☐ No
	If yes, then fill out Section F (Sediment Transport).
	If No, then attach your explanation for why debris/sediment analysis was not considered.
6.	Does the Base Flood Elevation behind the dam or downstream of the dam change?
	Yes No If Yes, complete the Riverine Hydrology & Hydraulics Form (Form 2) and complete the table below.
	Stillwater Elevation Behind the Dam
	FREQUENCY (% annual chance) FIS REVISED
	10-year (10%) 50-year (2%)
	100-year (1%) 500-year (0.2%)
	Normal Pool Elevation
7.	Please attach a copy of the formal Operation and Maintenance Plan

E. LEVEE/FLOODWALL

1.	Sys	stem Elements					
	а.	This Levee/Floodwall analysis is based on (check one):					
		upgrading of an existing levee/floodwall system					
		a newly constructed levee/floodwall system reanalysis of an existing levee/floodwall system					
	b.	Levee elements and locations are (check one):					
		structural floodwall	Station Station Station	to to to			
	c.	Structural Type (check one):					
		monolithic cast-in place reinforced concrete reinforced concrete masonry block sheet piling Other (describe):					
	d.	Has this levee/floodwall system been certified by a Federal agency	y to provide	protection from the bas	se flood?		
		☐ Yes ☐ No					
		If Yes, by which agency?					
	e.	Attach certified drawings containing the following information (indicated)	ate drawing	sheet numbers):			
		1. Plan of the levee embankment and floodwall structures.	Sheet N	lumbers:			
		 A profile of the levee/floodwall system showing the Base Flood Elevation (BFE), levee and/or wall crest and foundation, and closure locations for the total levee system. 	Sheet N	lumbers:			
		A profile of the BFE, closure opening outlet and inlet invert elevations, type and size of opening, and kind of closure.	Sheet N	lumbers:			
		4. A layout detail for the embankment protection measures.	Sheet N	lumbers:			
		Location, layout, and size and shape of the levee embankment features, foundation treatment, floodwall structure, closure structures, and pump stations.	Sheet N	lumbers:			
2.	Fre	<u>eeboard</u>					
	a.	The minimum freeboard provided above the BFE is:					
		Riverine					
		3.0 feet or more at the downstream end and throughout 3.5 feet or more at the upstream end			☐ Yes		
		4.0 feet within 100 feet upstream of all structures and/or constriction	ons		☐ Yes		
		Coastal					
		1.0 foot above the height of the one percent wave associated with stillwater surge elevation or maximum wave runup (whichever is gr		ual-chance			
			, .		☐ Ye	s 🗌 No	
		2.0 feet above the 1%-annual-chance stillwater surge elevation			☐ Ye	s 🗌 No	

2.	Freeboard (continued)								
	Please note, occasionally exceptions are made to the minimum freeboard requirement. If an exception is requested, attach documentation addressing Paragraph 65.10(b)(1)(ii) of the NFIP Regulations.								
	If No is answered to any of the above, please attach an explanation.								
	b. Is there an indication from historical records that ice-jamming can affect the BFE? ☐ Yes ☐ No								
	If Yes, provide ice-j	am analysis profil	e and eviden	ce that the minim	um freeboard	I discussed ab	ove still exists	S.	
3.	Closures								
	a. Openings through t	he levee system (check one):	□ ex	ists 🗌 do	es not exist			
	If opening exists, lis	st all closures:							
Cha	nnel Station	Left or Righ	t Bank	Opening	Type	Highest E	levation for	Type of (Closure Device
Cila	Tiller Station	Left of Right	t Barik	Ореннід	Туре	Openir	ng Invert	Type or C	Diosure Device
(Ext	end table on an added	I sheet as neede	ed and refe	rence)					
Note	e: Geotechnical and g	eologic data							
	In addition to the red design analysis for the Corps of Engineers	the following sys	stem feature	es should be sul	ned during f bmitted in a	ield and labo tabulated su	ratory inves mmary form	tigations and n. (Reference	used in the U.S. Army
4.	Embankment Prote	ection ection							
	a. The maximum le	vee slope landsi	de is:						
	b. The maximum le	vee slope floods	ide is:						
	c. The range of velo	ocities along the	levee durin	g the base floo	d is:	(min.) to	(max.)		
	d. Embankment ma	terial is protecte	d by (descr	ibe what kind):					
	e. Riprap Design Pa Attach references		k one):		Velocity	Tractiv	e stress		
	5	0:1.1	Flow	V 1 "	Curve or		Stone Ripr	ар	Depth of
	Reach	Sideslope	Depth	Velocity	Straight		D ₅₀	Thickness	Toedown
Sta	to								
Sta	to								
Sta	to								
Sta	to								
Sta	to								
Sta	to								
(Fyt	end table on an added	I sheet as need	ed and refe	rence each entr	-v)				

4.	<u>Emba</u>	ankment Protection (continued)				
	f. I	Is a bedding/filter analysis and design attached?				
	g. [Describe the analysis used for other kinds of prof	tection used (include copies of the design analysis):			
5.	Emba	Attach engineering analysis to support construct ankment And Foundation Stability Identify locations and describe the basis for sele				
		Overall height: Sta. ; height ft.				
	[Limiting foundation soil strength:				
		Sta. , depth to				
		strength ϕ = degrees, c = psf				
		slope: $SS = (h)$ to (v)				
		(Repeat as needed on an added sheet for a	dditional locations)			
	b.	Specify the embankment stability analysis method	odology used (e.g., circular arc, sliding block, infinite slop	e, etc.):		
	C.	Summary of stability analysis results:				
C	c. ase	Summary of stability analysis results: Loading Conditions	Critical Safety Factor	Criteria (Min.)		
C		1	Critical Safety Factor	Criteria (Min.)		
C	ase	Loading Conditions	Critical Safety Factor			
	ase I	Loading Conditions End of construction	Critical Safety Factor	1.3		
	ase I	Loading Conditions End of construction Sudden drawdown	Critical Safety Factor	1.3		
	ase I II	Loading Conditions End of construction Sudden drawdown Critical flood stage	Critical Safety Factor	1.3 1.0 1.4		
	Case I II III IV VI	Loading Conditions End of construction Sudden drawdown Critical flood stage Steady seepage at flood stage	Critical Safety Factor	1.3 1.0 1.4 1.4		
	case I II III IV VI erence	Loading Conditions End of construction Sudden drawdown Critical flood stage Steady seepage at flood stage Earthquake (Case I)		1.3 1.0 1.4 1.4		
	ase IIIIIIV VI erence d. V	Loading Conditions End of construction Sudden drawdown Critical flood stage Steady seepage at flood stage Earthquake (Case I) SUBACE EM-1110-2-1913 Table 6-1)		1.3 1.0 1.4 1.4		
	ase I II III IV VI erence d. V	Loading Conditions End of construction Sudden drawdown Critical flood stage Steady seepage at flood stage Earthquake (Case I) EUSACE EM-1110-2-1913 Table 6-1) Was a seepage analysis for the embankment per	rformed?	1.3 1.0 1.4 1.4		
	ase I II III IV VI erence d. V I e. V	Loading Conditions End of construction Sudden drawdown Critical flood stage Steady seepage at flood stage Earthquake (Case I) E: USACE EM-1110-2-1913 Table 6-1) Was a seepage analysis for the embankment per figure.	rformed?	1.3 1.0 1.4 1.4		
	in the second of	Loading Conditions End of construction Sudden drawdown Critical flood stage Steady seepage at flood stage Earthquake (Case I) E: USACE EM-1110-2-1913 Table 6-1) Was a seepage analysis for the embankment per fixes, describe methodology used: Was a seepage analysis for the foundation performance in the seepage analysis for	rformed?	1.3 1.0 1.4 1.4		
	ill III IV VI erence d. V f. V	Loading Conditions End of construction Sudden drawdown Critical flood stage Steady seepage at flood stage Earthquake (Case I) USACE EM-1110-2-1913 Table 6-1) Was a seepage analysis for the embankment per fixed years of the foundation performance of the seepage analysis for the foundation performance uplift pressures at the embankment landsice.	rformed?	1.3 1.0 1.4 1.4		
	ase I II III IV VI erence d. \(\) f. \(\) g. \(\) h. \(\)	Loading Conditions End of construction Sudden drawdown Critical flood stage Steady seepage at flood stage Earthquake (Case I) USACE EM-1110-2-1913 Table 6-1) Was a seepage analysis for the embankment per fixed years and years as the foundation perform. Were uplift pressures at the embankment landsic of the seepage exit gradients checked for piping in the duration of the base flood hydrograph agains	rformed?	1.3 1.0 1.4 1.4		
	ase I II III IV VI erence d. \(\) f. \(\) g. \(\) h. \(\)	Loading Conditions End of construction Sudden drawdown Critical flood stage Steady seepage at flood stage Earthquake (Case I) USACE EM-1110-2-1913 Table 6-1) Was a seepage analysis for the embankment per fixed years and years as the foundation perform of the seepage analysis for the foundation performance of the seepage analysis for the seepage analysis for the foundation performance of the seepage analysis for the s	rformed?	1.3 1.0 1.4 1.4		
	ase I II III IV VI erence d. \(\) f. \(\) g. \(\) h. \(\)	Loading Conditions End of construction Sudden drawdown Critical flood stage Steady seepage at flood stage Earthquake (Case I) USACE EM-1110-2-1913 Table 6-1) Was a seepage analysis for the embankment per fixed years and years as the foundation perform. Were uplift pressures at the embankment landsic of the seepage exit gradients checked for piping in the duration of the base flood hydrograph agains	rformed?	1.3 1.0 1.4 1.4		

			E. LEV	EE/FLOODWALL (CONTINUED)		
6. <u>Flo</u>	oodwall And Found	ation Stability					
a.	a. Describe analysis submittal based on Code (check one):						
☐ UBC (1988) or ☐ Other (specify):							
b.	Stability analysis	submitted provid	es for:				
	☐ Overturning	☐ Sliding	If not, explain	:			
C.	Loading included	in the analyses v	were:				
	☐ Lateral earth	@ P _A = ps	sf; P _p =	psf			
	☐ Surcharge-SI	ope @ , [surface	psf			
	☐ Wind @ P _w =	psf					
	☐ Seepage (Up	lift);	☐ Earth	quake @ P _{eq} =	%g		
	☐ 1%-annual-ch	nance significant	wave height:	ft.			
	☐ 1%-annual-ch	ance significant	wave period:	sec.			
d.	Summary of Sta	bility Analysis Re	sults: Factors o	f Safety.			
	Itemize for each	range in site layo	out dimension ar	nd loading condition lin	nitation for each resp	ective reach.	
Load	ling Condition	Criteria	(Min)	Sta	То	Sta	То
	J	Overturn	Sliding	Overturn	Sliding	Overturn	Sliding
Dead & \	Wind	1.5	1.5				
Dead &	Soil	1.5	1.5				
Dead, So Impact	oil, Flood, &	1.5	1.5				
Dead, So	oil, & Seismic	1.3	1.3				
	(Ref: F	FEMA 114 Sept 1	986; USACE EN	/l 1110-2-2502)			
	(Note:	Extend table on	an added sheet	as needed and referer	nce)		
e.	Foundation bear	ring strength for e	each soil type:				
	Bearing	g Pressure		Sustained	Load (psf)	Short Terr	n Load (psf)
Compute	ed design maximun	n					
Maximur	n allowable						
f.							

7.	<u>Set</u>	tlement .
	a.	Has anticipated potential settlement been determined and incorporated into the specified construction elevations to maintain the established freeboard margin?
	b.	The computed range of settlement is ft. to ft.
	C.	Settlement of the levee crest is determined to be primarily from :
		☐ Foundation consolidation ☐ Embankment compression ☐ Other (Describe):
	d.	Differential settlement of floodwalls $\ \ \ \ \ \ \ \ \ \ \ \ \ $
		Attach engineering analysis to support construction plans.
8.	Inte	erior Drainage
	a.	Specify size of each interior watershed:
		Draining to pressure conduit: acres Draining to ponding area: acres
	b.	Relationships Established
		Ponding elevation vs. storage
	c.	The river flow duration curve is enclosed:
	d.	Specify the discharge capacity of the head pressure conduit: cfs
	e.	Which flooding conditions were analyzed?
		 Gravity flow (Interior Watershed) Common storm (River Watershed) Historical ponding probability Coastal wave overtopping Yes No No
		If No for any of the above, attach explanation.
	f.	Interior drainage has been analyzed based on joint probability of interior and exterior flooding and the capacities of pumping and outlet facilities to provide the established level of flood protection.
		If No, attach explanation.
	g.	The rate of seepage through the levee system for the base flood is cfs
	h.	The length of levee system used to drive this seepage rate in item g: ft.

8.	Inte	rior Drainage (continued) Will pumping plants be used for interio	or drainage?	☐ Yes	□No	
		If Yes, include the number of pumping For each pumping plant, list:	plants:			
			Plant #1			Plant #2
The	num	ber of pumps				
The	pond	ling storage capacity				
The	maxi	mum pumping rate				
The	maxi	mum pumping head				
The	pum	ping starting elevation				
The	pum	ping stopping elevation				
Is th	e dis	charge facility protected?				
		ı flood warning plan?				
	muc flood	th time is available between warning ling?				
Will	the o	peration be automatic?			☐ Yes	□No
If the	e pun	nps are electric, are there backup power	sources?		☐ Yes	□ No
(Ref	eren	ce: USACE EM-1110-2-3101, 3102, 31	03, 3104, and 3105)			
		copy of supporting documentation of da atersheds that result in flooding.	ita and analysis. Provide a ma	showing	the floode	d area and maximum ponding elevations for all
9.	<u>Oth</u>	ner Design Criteria				
	a.	The following items have been address	sed as stated:			
		Liquefaction ☐ is ☐ is not a problem Hydrocompaction ☐ is ☐ is not a pr Heave differential movement due to so	oblem] is not a	problem	
	b.	For each of these problems, state the b	pasic facts and corrective action	taken:		
		Attach supporting documentation				
	C.	If the levee/floodwall is new or enlarged ☐ Yes ☐ No	d, will the structure adversely in	pact flood	d levels an	d/or flow velocities floodside of the structure?
		Attach supporting documentation				
	d.	Sediment Transport Considerations:				
		Was sediment transport considered? If No, then attach your explanation for				(Sediment Transport).

		E. LEVEE/FLOODWALL (CONTINUED)
10.	Оре	erational Plan And Criteria
	a.	Are the planned/installed works in full compliance with Part 65.10 of the NFIP Regulations?
	b.	Does the operation plan incorporate all the provisions for closure devices as required in Paragraph 65.10(c)(1) of the NFIP regulations? Yes
	C.	Does the operation plan incorporate all the provisions for interior drainage as required in Paragraph 65.10(c)(2) of the NFIP regulations? Yes
		If the answer is No to any of the above, please attach supporting documentation.
11.	Ma	intenance Plan
	a.	Are the planned/installed works in full compliance with Part 65.10 of the NFIP Regulations?
12.	Оре	erations and Maintenance Plan
		Please attach a copy of the formal Operations and Maintenance Plan for the levee/floodwall.
		F. SEDIMENT TRANSPORT
Floo	ding	Source:
Nam	e of	Structure:
Base a po	e Floo tentia	any indication from historical records that sediment transport (including scour and deposition) can affect the od Elevation (BFE); and/or based on the stream morphology, vegetative cover, development of the watershed and bank conditions, there is all for debris and sediment transport (including scour and deposition) to affect the BFEs, then provide the following information along with the g documentation:
Sedi	ment	load associated with the base flood discharge: Volume acre-feet
Debi	ris lo	ad associated with the base flood discharge: Volume acre-feet
Sedi	ment	transport rate (percent concentration by volume)
Meth	nod u	sed to estimate sediment transport:
		iment transport formulas are intended for a range of hydraulic conditions and sediment sizes; attach a detailed explanation for using the method.
Meth	nod u	sed to estimate scour and/or deposition:
Plea	se no	sed to revise hydraulic or hydrologic analysis (model) to account for sediment transport: ote that bulked flows are used to evaluate the performance of a structure during the base flood; however, FEMA does not map BFEs based if flows.
		nent analysis has not been performed, an explanation as to why sediment transport (including scour and deposition) will not affect the BFEs res must be provided.